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Critical exponents for branching annihilating random walks
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Recently, Takayasu and Tretyakov [Phys. Rev. Lett. 68, 3060 (1992)] studied branching anni-
hilating random walks (BAW’s) with n = 1-5 offspring. These models exhibit a continuous phase
transition to an absorbing state. For odd m the models belong to the universality class of di-
rected percolation. For even n the particle number is conserved modulo 2 and the critical behavior
is not compatible with directed percolation. In this article I study the BAW with n = 4 using
time-dependent simulations and finite-size scaling, obtaining precise estimates for various critical
exponents. The results are consistent with the conjecture: 8/v; = %, y/vL = %, y=0,6 = %,
n =0, and 0, = g. These critical exponents characterize, respectively, the dependence of the order
parameter (3/v.) and relaxation time (v|/v1) on system size, the growth of fluctuations (7y) close
to the critical point, the long-time behavior of the probability of survival (§) and average number
of particles (n) when starting at time zero with just two particles, and finally the decay of the order
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parameter (65) at the critical point in the presence of an external source.

PACS number(s): 05.70.Ln, 05.50.+q, 64.90.4+b

I. INTRODUCTION

Extensive studies of various nonequilibrium models
exhibiting a second-order phase transition to a unigque
absorbing state have revealed that directed percolation
(DP) [1-4] is the generic critical behavior of such models.
Other well-known models belonging to the DP universal-
ity class are the contact process [5-7], Schlogl’s first and
second models [8-11], and Reggeon field theory [9,12].
Numerous models studied in recent years demonstrate
the robustness of this universality class against a wide
range of changes in the local kinetic rules such as mul-
tiparticle processes [13-16], diffusion [17], and changes
in the number of components [18]. Very recently it was
shown that even models with infinitely many absorbing
states may exhibit DP critical behavior [19].

Recently, Takayasu and Tretyakov [20] studied the
branching annihilating random walk (BAW) with n = 1-
5 offspring. The BAW is a lattice model in which each
site is either empty or occupied by a single particle. The
evolution rules are quite simple and each “elementary”
step starts by chosing a particle at random. With proba-
bility p the particle jumps to a randomly chosen nearest
neighbor. If this site is already occupied the particles
annihilate mutually. With probability 1 — p the parti-
cle produces n offspring, which are placed on the closest
neighboring sites. When an offspring is created on a site
already occupied, both particles annihilate leaving be-
hind an empty site. In one dimension (1D) for n =1 it
has been shown [21] that the BAW has an active steady-
state for sufficiently small p. Computer simulations re-
vealed that the phase transition from the active state to
the absorbing state is continuous [20]. BAW’s with an
odd number of offspring include a combination of dif-
fusion and various multiparticle processes. One would
expect, therefore, bearing in mind the robustness of DP

*Electronic address: iwan@maths.mu.oz.au

1063-651X/94/50(5)/3623(11)/$06.00 50

critical behavior, that the transition should belong to the
universality class of directed percolation. The steady-
state concentration of particles p (which is the appropri-
ate order parameter) decays as

p x |pc - plﬁi (1)
in the supercritical regime (p < p.), where 3 is
the order parameter critical exponent. Estimates for
B, obtained from computer simulations, were however
only marginally consistent with directed percolation.
Takayasu and Tretyakov [20] found p. = 0.108 + 0.001
and 8 = 0.32 + 0.01 which should be compared to the
value 8 = 0.2769 + 0.0002 [22] for the one-dimensional
contact process. For n = 3 and n = 5 they found that
pe = 0.461 £ 0.002 and 0.718 + 0.001, respectively, with
B = 0.3310.01 in both cases. Time-dependent computer
simulations [23] for n = 1 and 3 yielded estimates for
three critical exponents in good agreement with directed
percolation, thus supporting the notion that BAW’s with
an odd number of offspring belong to the DP universality
class. This conclusion has been confirmed recently by a
study [24] of the BAW with n = 1 yielding a value of 3
consistent with DP, using mean field cluster expansions
and the coherent anomaly method [25].

When n is even the number of particles is conserved
modulo 2 and the absorbing state can only be reached if
one initially has an even number of particles. For n = 2
the model does not have an active steady state [26,27]
whereas for n = 4 it was found [20] that p. = 0.72+0.01
and 8 = 0.710.1, which clearly places the model outside
the DP universality class. Grassberger et al. [28] studied
a model, involving the processes X — 3X and 2X — 0,
from which it is obvious that once again the number of
particles is conserved modulo 2. Steady-state and time-
dependent computer simulations yielded non-DP values
for various critical exponents (this model and the results
will be described in more detail in Sec. VI). The conserva-
tion of particle number modulo 2 is probably responsible
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for the non-DP behavior. Support for this idea was pro-
vided by a recent study [29] of a modified version of the
BAW with n = 4. In this study, spontaneous annihila-
tion of particles was included, thus destroying the con-
servation of particles modulo 2. Results from computer
simulations clearly showed that adding spontaneous an-
nihilation changes the critical behavior from non-DP to
DP, even for very low rates of spontaneous annihilation
[29].

As non-DP behavior is so rare it is clearly of great
interest to study BAW’s with an even number of offspring
in greater detail. In this paper, I present results from
extensive computer simulations of the one-dimensional
BAW with n = 4 using time-dependent simulations and
finite-size scaling analysis of steady-state simulations.

II. TIME-DEPENDENT SIMULATIONS

Earlier studies [4,9,15,16,30] have revealed that time-
dependent simulation is a very efficient method for de-
termining critical points and exponents for models with
a continuous transition to an absorbing state. The gen-
eral idea of time-dependent simulations is to start from
a configuration that is very close to the absorbing state,
and then follow the “average” time evolution of this con-
figuration by simulating a large ensemble of independent
realizations. In the simulations presented here, I always
started, at ¢ = 0, with two occupied nearest neighbor
sites placed at the origin. I then made a number Ng of
independent runs, typically 5 x 10, for different values of
p in the vicinity of p.. As the number of particles is very
small an efficient algorithm may be devised by keeping
a list of occupied sites. In each elementary step a par-
ticle is draw at random from this list and the processes
are performed according to the rules given earlier. Before
each elementary change, the time variable is incremented
by 1/n(t), where n(t) is the number of particles on the
lattices prior to the change. This makes one time step
equal to (on the average) one attempted update per lat-
tice site. Each run had a maximal duration ¢5; of 5000
time steps. I measured the survival probability P(t) (the
probability that the system had not entered the absorb-
ing state at time t), the average number of occupied sites
7(t), and the average mean square distance of spreading
R2(t) from the center of the lattice. Notice that 7(¢)
is averaged over all runs whereas R2(t) is averaged only
over the surviving runs. From the scaling ansatz for the
contact process and similar models [4,9,30] it follows that
the quantities defined above are governed by power laws
at p.ast — oo

P(t) x t5&(At* /™), (2)
a(t) o tTE (AL VI, (3)
R%(t) o t*© (A1), (4)

where A = |p. — p| is the distance from the critical point
and v is the correlation length exponent in the time
direction.

If the scaling functions ®, ¥, and © are_nonsingular
at the origin it follows that P(t), A(t), and R?(t) behave
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as pure power laws at p. for t — oco. In log-log plots of
P(t), A(t), and R%(t) as a function of ¢ one should see
(asymptotically) a straight line at p = p.. The curves
will show positive (negative) curvature when p < p. (p >
pc). This enables one to obtain accurate estimates for p..
The asymptotic slope of the (critical) curves define the
dynamic critical exponents 8, 7, and z. Generally one
has to expect corrections to the pure power-law behavior
so that P(t) is more accurately given as [4]

P(t) < t7°(1 + at™' + bt™% + ... (5)

and similarly for 72(¢t) and R%(t). More precise estimates
for the critical exponents can be obtained by looking at
local slopes

In[P(t)/P(t/m)]

In(m) ’ (6)

—8(t) =
and similarly for 7(t) and z(t); in this work I used m = 5.
The local slope §(t) behaves as [4]

5(t) = 6 + at™' + b8t 4+ .- (7)

and similar expressions for n(t) and z(t). Thus in a plot
of the local slopes vs 1/t the critical exponents are given
by the intercept of the curves for p. with the y axis. The
off-critical curves often have a very notable curvature,
i.e., one will see the curves for p > p. veering downward
while the curves for p < p. veer upward.

The local slopes thus provide us with a very efficient
means for estimating both the location of the critical
point and the values of various critical exponents. In
Fig. 1, I have plotted the local slopes for various values
of p. The maximal number of time steps tpr = 5000
and the number of samples Ns = 5 x 10° except for
p = 0.721 where Ns = 2 x 10%. One clearly sees that
the curves for p = 0.715 veer upwards and the curves
for p = 0.727 veer downward and these values of p are
thus off critical. For p = 0.724 the curve for —6(t)
veers downward at the end as 1/t — 0. I, therefore,
conclude that p. < 0.724. The curve for p = 0.718
does not exhibit pronounced curvature and is thus close
to p., however 7(t) does seem to veer upwards so p.
is probably larger than 0.718. All in all it seems that
p = 0.721 is the value closest to p. leading to the es-
timate p. = 0.721 & 0.003, which is in excellent agree-
ment with the estimate p. = 0.72 + 0.01 obtained by
Takayasu and Tretyakov [20]. In order to obtain a better
estimate for p. and the critical exponents I performed
extensive simulations for p = 0.7210, 0.7215, and 0.7220,
with tpr = 5000 and Ns = 2 x 10°. The resulting local
slopes are shown in Fig. 2. None of the curves exhibit
pronounced curvature, however, the estimate n = 0 ob-
tained for p = 0.7215 is to be preferred (if only for aes-
thetical reasons) over an estimate that is very close to
zero. All in all, I conclude that p. = 0.7215 &+ 0.0005.
From the intercept of the critical curves with the y axis I
obtain the estimates § = 0.286+0.001, n = 0+0.001, and
2z = 1.143 + 0.003. These results certainly suggest that
n = 0 is an ezact result. One might thus hope that the
other exponents are given by simple fractions, and indeed
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FIG. 1. Local slopes —4(t) (upper panel), n(t) (middle
panel), and z(t) (lower panel), as defined in Eq. 6 with m = 5.
Each panel contains five curves with, from top to bottom,
p = 0.715, 0.718, 0.721, 0.724, and 0.727.

I find that § = 2 = 0.28571... and z = § = 1.14285...
are consistent with the simulation results. Note that both
the conjectured exact values and the estimates obey the
hyperscaling relation [4,9,30]

46 + 20 = dz, (8)

which lends further support to the validity of the asump-
tions made above.

III. FINITE-SIZE SCALING ANALYSIS

The concepts of finite-size scaling [31], though origi-
nally developed for equilibrium systems, are also appli-
cable to nonequilibrium second-order phase transitions.
Aukrust et al. [14] showed how finite-size scaling can
be used very successfully to study the critical behav-
ior of nonequilibrium systems exhibiting a continuous
phase transition to an absorbing state. As in equilib-
rium second-order phase transitions one assumes that the
(infinite-size) nonequilibrium system features length and
time scales that diverge at criticality as
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FIG. 2. Same as in Fig. 1 but for p = 0.7210, 0.7215, and
0.7220.

E(P) & |pc ‘—pl—ul’ (9)

and

7(p) o |pe — p|™"1, (10)
where v) (v)) is the correlation length exponent in the
space (time) direction.

A. Static behavior

One expects finite-size effects to become important
when the correlation length £(p) ~ L. The basic
finite-size scaling ansatz is that various physical quan-
tities depend on system size only through the scaled
length L/€(p), or equivalently through the variable
(pe — p)L}*+. Thus we assume that the order parame-
ter depends on system size and distance from the critical
point as

pa(p, L) oc L7P/*+ f((p. — p)LM*+), (11)

such that at p.

Ps(pe, L) oc L™R/v+, (12)
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and f(z) « z for z — oo, so that Eq. (1) is re-
covered when L — oo in the critical region. In p,,
and other quantities, the subscript s indicates an aver-
age taken over the surviving samples, i.e., the average
includes only those samples that have not yet entered
the absorbing state. The restriction to surviving sam-
ples ensures that the system enters a “quasisteady state”
in which a quantity such as p, becomes constant after
a relative short transient time [14,19]. In the supercrit-
ical regime p, should approach a nonzero asymptote for
L > &(p), while in the subcritical regime one expects p,
to decay faster than a power law. Thus p. may be de-
termined as the value yielding a straight line in a log-log
plot of p, versus L. However, since the time-dependent
simulations already yielded an accurate estimate of p,
I have only performed the steady-state simulations for
p = p. = 0.7215 with various values of the system size
L. Figure 3 shows a log-log plot of the average concen-
tration of particles p,(pc, L) in the quasisteady state as a
function of L. The number of time steps t3; and indepen-
dent samples Ng varied from t;; = 200, Ns = 200 000
for L = 16 to tps = 5000000, Ns = 100 for L = 16384.
As can be seen the data falls very nicely on a straight
line, from the slope of this line I obtain the estimate
B/vy = 0.50 & 0.01. This result clearly suggests that
6/ vy = %

Another exponent estimate can be obtained from the
fluctuations,

x = L*((p?) — (p)?) « |pc — p| 7", (13)

where L is the linear extension of the system. Equa-
tion (13) thus leads to the following finite-size scaling
ansatz:

Xs(p, L) o< L"** g((pe — p)LM*+), (14)
and

Xs(Pe, L) o LY/v+, (15)

When plotting the data for x on a log-log scale the
curve had no pronounced slope showing that v ~ 0 sug-
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FIG. 3. ps(pc, L) vs L at p. = 0.7215. The slope of the line
is B/vy = 1.

gesting that the fluctuations grow only logarithmically
with system size. Figure 4 shows a log-lin plot of the
susceptibility x,(pc, L) as a function of L. The data falls
more or less on a straight line (with large error bars for
large L values) showing that v indeed is zero. Note that
this result through the scaling relation [14,19]

’y:duL-‘2ﬁs (16)

leads to the ezact result 8/v, = % in full agreement with
the simulation results for p,.

B. Dynamical behavior

Additional exponents may be obtained from the dy-
namical behavior of the system. In this study, I define
a characteristic time, 7(p,L), as the time it takes for
one half the sample to enter the absorbing state. From
Eq. (10) we obtain the following finite-size scaling form:

7(p, L) o LYh((pe — p)L*/**), (17)
where y = v /v;. At p. we thus have
T(pe, L) o< LY. (18)

In Fig. 5, I have plotted, on a log-log scale, 7,(p., L)
as a function of L. Again we see a nice straight line this
time with slope V”/I/L = 1.75 + 0.01, which leads to the
conjecture v /v = %. This value agrees with the scaling
relation [4],

Z:ZV_L/V”. (19)

One may also study the dynamical behavior by looking
at the time dependence of p,(p.,L,t). For t > 1 and
L > 1 one can assume a scaling form

pe(pe, Lyt) oc L™R/V+ f(t/LY). (20)
0.4 | - -
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FIG. 4. Log-lin plot of the susceptibility x,(pc, L) vs L at
the critical point p. = 0.7215.
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FIG. 5. 7(pc, L) vs L with p. = 0.7215. The slope of the
line is y = v /vL = I.

At p. the system shows power-law behavior for t <
LY before finite-size effects become important. Thus for
L> 1landt < L¥ p(pc,L,t) < t~°. From Eq. (20) it
then follows that

0 =B/(viy) = B/v) = 4. (21)

Figure 6 shows the short-time evolution of the concen-
tration of particles at p.. The slope of the line drawn in
the figure is § = .2, and this value seems to be in excellent
accord with the simulation data.

IV. DETERMINING G, v, AND v,

The numerical values of v and v, turns out to be
quite large. It is, therefore, difficult to obtain accurate
estimates for these exponents and [ since the correla-
tion time and length grow rapidly as one approaches the
critical point. The exponent estimates presented in this

10°

a 10!

10-2 ! i
10° 10! 10? 10° 10*

t

FIG. 6. The short-time decay of the density of particles
p(pec, L, t) as a function of ¢ at the critical point with L = 218,
The slope of the line is 8 = 8/y = 2.

section are thus marked by far greater uncertainties than
those of the preceding sections.

A. Time-dependent simulations

Estimates for 8 and v|| can be obtained from time-
dependent simulations in the supercritical and subcritical
regions [30]. In the supercritical region the number of
indepent runs Ns and the maximal duration tps of each
run varied from Ng = 15000, ¢ = 1000 000 closest to p.,
to Ns = 100000, tp; = 100 furthest away from p.. One
may analyze the data by utilizing the scaling behavior
expressed in Egs. (2)—(4). First we rewrite the equations
by changing the variable to z = At'/*I. The expression
for the survival probability then becomes (after noting
that t =% = AI%z="19)

P(z) « A"z 158(z). (22)

The expressions for 7i(t) and R?(t) can be rewritten
in a similar manner. In plots of A~"ISP(t), A¥IMq(t),
or A¥I*R%(t) vs = we should see the data collapse onto
single curves. Since I am fairly certain that the estimates
for p., 8, , and z are very accurate there is really only
one free variable v to be determined in the scaling anal-
ysis. Figure 7 shows the results with p. = 0.7215, § = %,
n=0,and z = %, while the “free” variable v = 3.25,
which leads to a decent data collapse. The curves that
do not collapse onto the common curve are those fur-
thest away from p. and thus those for which corrections
to scaling are expected to be the strongest. The value
v, = 3 also leads to a decent collapse, but now the de-
viating curves are those closest to p. which should rule
out this value. v = 3.5 is also a possibility, but the scal-
ing collapse is less impressive in this case. Due to the
fact that the simulations could not be extended closer to
P (the demands in CPU time simply become too great)
it is not possible to rule this value out entirely. I thus
conclude that v = 3.25 £ 0.25 though the lower end of
this range is highly unlikely. Using the finite-size results

v /vy = % and B/v, = %, we see that v = 173 gives the
estimates v} = 1—73 and 8 = 1—2, whereas v = % yields

vy = 2 and B = 1. The latter set of values is certainly
aesthetically more appealing, but as I will argue below
the simulations do seem to favor the former values.

B and v can also be estimated directly from the
asymptotic behavior of P(t) and @(t). We see that by
setting ¢(y) = y~*1®(y) we may rewrite Eq. (2) as

P(t) o« AY®¢(At /™). (23)

Since the system is in the supercritical region there
must be a finite chance of survival; were this not the case
any configuration would eventually die out, contrary to
our knowledge that the system has an active steady state
in this regime. Thus since P, = lim;, o, P(t) is finite,
lim,,_, o 9 (y) is finite too, and we get

Py, x AYIS, (24)
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For the contact process it has been shown [9] that P,
and the average steady-state concentration of particles p
are governed by the same critical exponent. Numerical
studies have shown that this also holds for a wide variety
of other models. Assuming that this also is the case for
the BAW, the following scaling relation should hold:

B =y (25)

Figure 8 shows a log-log plot of the ultimate survival
probability P,, as a function of the distance from the
critical point. The slope of the curve yields the estimate
B =0.93 + 0.05.

Assuming that the density of the surviving events is
constant inside a d-dimensional sphere expanding with
constant velocity v, we find that

(R*(t)*/?) ~ constv x t (26)

for fixed A > 0 and for t — oco. From Eq. (4) we see
that (R2(t))Y/2 o t only if g(y) ~ y(17*/PI for y — oo,
showing that

20 0.6

AIP(t) PO
5] ‘

02

10} 010“ 10! 107 10° 10* 10° 10°

t

0

20
A™n(t)
15

10

0 o

sz|R2(t)

2t 10°

m‘;d’ 10 107 10° 10* 10° 10°
1

0 02 04 06 08
At/

FIG. 7. Plots of A™%I P(t) (upper panel), A™!#(t) (mid-
dle panel), and A*I R?(t) (lower panel) vs At'/”Il for various

values of p in the supercritical region. The critical parameters

are p. = 0.7215, vy = 143, §=2%2,7n=0,and z = %. In each

panel is an inset showing the unscaled data, i.e., P(t), @(t),
and R3(t) vs 1/t.
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FIG. 8. The ultimate survival probability P vs p. — p.
The slope of the line is 8 = g.

voc A2/ 2w (27)

Thus, Ro, = limg,eo(R2(t))Y/2/t o« A=2/2%1 5o
that we may obtain an estimate for the exponent (1 —
z/2)vy = v —v_ from the asympiotic behavior of R?(t).
In Fig. 9, I have plotted R, as a function of the dis-
tance from the critical point. The slope of the line yields
I/H —V; = 1.35 £ 0.10.

Finally, we may find the asymptotic behavior of the
average number of particles in the supercritical regime,
as it is simply proportional to the product of the con-
centration of particles, the ultimate survival probability,
and the volume of the sphere inside which the surviving
events exist. Equations (26), (27), and (25) thus gives

7(t) ~ const x pPu[(R2(t))Y/?]4

~ A28+(1=2/2)vyd 4d (28)
0
10 F
ol
n:g Z/
102 | /Z/Z
/Z
103
10-2 10"1 100

PP

FIG. 9. Roo = lime 0o (R2(t))!/2/t vs p. — p. The slope of
the line is vy — v, = 5%.
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We thus see that ne, = lims,eon(t)/t? o
A%+(1-2/2vd_ From the scaling relation Eq. (19) and
the conjecture /v, = % it follows that the critical ex-
ponent of ne in 1D is 23 + (1 — z/2)y = ;. Figure 10
is a log-log plot of n, vs p. — p. From the asymptotic
slope of the curve I estimate that v = 3.25 & 0.10.

In the subcritical regime the process must eventually
die, and since correlations are of finite range one expects
P(t) to decay ezponentially. The associated scaling func-
tion must satisfy, ¥(y) o< (—y)®*I exp[—b(—y)"I]for y —
—oo, where b is a constant. When inserted in Eq. (2) this
implies

P(t) o« (—A)1 exp[—b(—A)"I1] . (29)

Likewise, one expects that the average number of parti-
cles decays exponentially,

A(t) o< (—A)T"™I exp[—c(—A)*It]. (30)

The decay constants in Egs. (29) and (30) are just the
inverse of the correlation time 7 oc A~"I. We can thus
find a corroborating estimate for v by studying the ex-
ponential decay of P(t) and #(t) in the subcritical region.
In Fig. 11, I have plotted the estimates for 7, obtained
from the exponential decay of 7i(t), as a function of the
distance from the critical point. The error-bars on these
data points are so large that an improved estimate is out
of the question. But clearly the value y| = % is fully
compatible with the data.

Since the population is not growing on average,
we expect the surviving particles to spread through
space via simple diffusion, which leads to O(y) o
(—y)*1*~2) for y — —oo, which when inserted in Eq. (4)
yields,

R? = Jim R%(t)/t oc AM1(1~2), (31)
10° —
/S .© °
107 oo
<
102 %
& &
ol /
10*
10° :
102 10! 10°
p-p
c

FIG. 10. The ultimate number of particles 700

= lim¢ o0 A(t)/t vs pc — p. The slope of the line is v = 13.
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FIG. 11. The correlation time 7 governing the decay of the

number of particles vs p—p.. The slope of the line is v = %.

Figure 12 shows a log-log plot of RZ, vs p — p.. The
slope of the line is (1 — z) = %—g, which agrees with the
data, though again the spread of the data points is quite
substantial.

B. Steady-state simulations

In Fig. 13, I have plotted p as a function of the dis-
tance from the critical point on a log-log scale, with
pe = 0.7215. The results were obtained by averaging over
typically 100 independent samples. The number of time
steps and system sizes varied from ¢ = 5000, L = 512 far
from p. to t = 500000, L = 8192 closest to p.. From
the results I estimate that 8 = 0.93 + (0.05) a value con-
sistent with the conjecture 8 = %. Figure 14 shows a
plot of ¥ as a function of the distance from the critical
point on a log-ln scale, with p. = 0.7215. As can be seen
the data clearly settles down to a constant close to the
critical point thus confirming that v = 0.

10!

10°
10‘2 10'1 100

PP

FIG. 12. Log-log plot of R%, vs p — p.. The slope of the

line is v (1 — 2) = L.



3630

10°

o

o0°

2 107 b

102 :
10-2 10'1 100

PP

FIG. 13. The steady-state density of particles p vs p. — p.
The slope of the straight line is 8 = 3.

14

V. FIELD EXPONENT

Finally, I examine the behavior in the presence of an
external source h, which can be added simply by allowing
pairs of nearest neighbor sites to become occupied spon-
taneously at rate h. Again, if a new particle is placed
on an already occupied site the two particles annihilate
mutually. This way of introducing the external source
preserves the conservation of particles modulo 2. The
diffusion and creation processes of the BAW now takes
place at rates A and unity, respectively, such that diffu-
sion happens with probability p = A/(A+h+1), creation
with probabily ¢ = 1/(A + h + 1), and spontaneous cre-
ation with probability s = h/(A + h + 1). The source
removes the phase transition, just as an external mag-
netic field does in the Ising model. Since h is a second
relevant parameter, one expects that at the critical point,
Ae = pe/(1—pc) >~ 2.5907, the order parameter decreases
as a power law when h — 0
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FIG. 14. The steady-state fluctuations in the number of
particles x vs the distance from the critical point.

pox hl/ok, (32)

In Fig. 15, I have plotted the steady-state density of
particles as a function of A at A.. The number of inde-
pendent samples Ng = 100, the maximal number of time
steps and system sizes varied from tj; = 1000, L = 2048
for large values of h to tpr = 250000, L = 8192 for small
values of h. The data fit very nicely to a power law with
exponent 1/6, = 0.232 4 0.002, which is consistent with

the conjecture 6, = 3.

VI. COMPARISON WITH OTHER STUDIES

Grassberger et al. [28] studied two one-dimensional cel-
lular automata in which the number of kinks between
ordered states is conserved modulo 2. Each site is in a
state S; = 0,1 and the transition rules depend only on
the site itself and its nearest neighbors. The model has
the following evolution rules

t+1: 0 0 1 1 1

and

t: 111 101 010 100 001

t+1: 0 1 0 1 1

When p is small the system orders itself spontaneously.
In model A there are two symmetrical absorbing states
consisting of alternating rows of 0 and 1. In model B
the time-space pattern of the two absorbing states form
a chessboard pattern [28]. When starting from a ran-
dom initial configuration the system evolves to a state
with small ordered domains separated by kinks. If p is

0 with probability 1 — p

011 110 000

0 with p;:)bability P

1 with probability 1 — p 0 model A
011 110 000

1 with probability p 0 model B

—

small the density of kinks decreases to zero as the system
evolves, but for p > p. a state with a nonzero density of
kinks is reached. The evolution rules are such that the
number of kinks is conserved modulo 2, this becomes
much clearer by noting that the evolution rules for the
kinks involve the two processes X — 3X and 2X — 0.
Steady-state and time-dependent computer simulations
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FIG. 15. The steady-state density of particles as a function
of the external source h at the critical point p. = 0.7215. The
slope of the line is 1/8, = 2.

yielded non-DP values for various critical exponents. In
the time-dependent simulations of model B, Grassberger
always started with a single kink so the absorbing state
could never be reached and all trials survived indefi-
nitely. The simulations yielded p. = 0.5403 + 0.0013,
n = 0272 +0.012, z = 1.11 + 0.02, v, = 3.3+ 0.2, and
B = 0.94 + 0.06. Note that while 7 is very different from
the results for the BAW, z is almost the same and both
vy and @ are fully consistent with the estimates given
above. This indicates that the two models belong to the
same universality class, at least as far as the static critical
behavior is concerned. The difference in the exponents
obtained from time-dependent simulations are, however,
simply due to the application of different initial configu-
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FIG. 16. Local slopes n(t) and 2(t) at p = 0.7215 starting
with a single particle.
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rations. By simulating the BAW with n = 4 starting with
just one particle at the origin I obtained the estimates
(see Fig. 16) n = 0.282 +0.005 and z = 1.140 £ 0.005, in
excellent agreement with Grassberger’s results. It is thus
clear that the two models belong to the same universal-
ity class. The exponent z seems to be independent of the
initial configuration, unlike n and (off-course) J, and the
exponents violate the hyperscaling relation Eq. (8). This
is reminiscent of the situation for systems with infinitely
many absorbing states where § and 7 depend continu-
ously on the density of particles in the initial configura-
tion [19,32]. In this case a generalized scaling relation
was found [32] to replace Eq. (8)

5+ﬁ/l/“+ﬂ=z/2, (33)

where § and 7 no longer are constants and the scaling
relation, § = B/v), is invalid. In this case I find with
6 =0, 8/y = %, and 2z = % that n = %, which is
consistent with the simulation results.

Recently, Kim and Park studied a one-dimensional
monomer-dimer model with repulsive interactions be-
tween species of the same kind [33]. When the interac-
tions are infinitely strong (exclusion) Monte Carlo sim-
ulations showed a critical behavior consistent with the
BAW with four offspring. In this version of the inter-
acting monomer-dimer model (IMD) a monomer (A4) can
adsorb at an empty site only when both nearest neigh-
bors are not occupied by a monomer. Likewise, a dimer
(B2z) can adsorb and dissociate onto a pair of vacancies
provided the nearest neighbors contain no B particles.
There is no mutual exclusion between A and B parti-
cles. When AB pairs are formed they react immedi-
ately and the product desorbs leaving behind two empty
sites. Any state concatenated from strings of sites in the
form A * Ax, A x Bx, and A * BB* (where * indicates
an empty site) is absorbing. The IMD has been stud-
ied using both finite-size scaling [33] and time-dependent
simulations [34). The results for various exponents are
summarized in Table I. As can be seen the critical expo-
nents for the IMD agree fully with those of the BAW with
n = 4 showing that the IMD is in the same universality
class as the BAW with four offspring.

Why does the IMD have the same critical behavior as
the BAW with an even number of offspring and the “kink-
models” of Grassberger et al.? The likely answer is that
in all of these models the critical dynamics is governed by
the evolution (creation or annihilation) of domain walls
between absorbing regions. This point was stessed by
Grassberger et al. [28] in their analysis of their cellular
automata models. Note, that the BAW may be seen as
directly modeling such domain walls. The IMD is ob-
viously a more complicated model and several different
types of domain walls are involved. Close to the critical
point the system consists of large regions in an absorb-
ing configuration separated by narrow boundary regions
of “active” sites. So even though the different types of do-
main walls are not conserved modulo 2 it still seems likely
that the critical behavior is determined by the process of
getting rid of domain walls and (if possible) ending up
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TABLE 1. Simulation results and conjectured values for the critical exponents for the
one-dimensional BAW with four offspring from this work and simulation results for the interacting
monomer-dimer model from Refs. [33,34]. n' is the exponent governing the growth of the average
number of particles when the absorbing can not be reached. For comparison, the corresponding
exponent estimates for models in the DP universality class is listed, taken from Refs. [22,35] (3),
[36] (v, v, and v1), and [37] (8»). In the estimate for v I used v = PP — v|. The estimates for
the remaining exponents were obtained using scaling relations. The figures in parenthesis are the

quoted uncertainties in the last digits.

Exponent BAW simulations Conjecture IMD simulations DP class
B 0.92(3) = 0.88(2) 0.2767(4)
v 0.00(5) 0 N.A. 0.5438(13)
vy 3.25(10) 13 3.17(5) 1.7334(10)
vy 1.84(6) L 1.83(3) 1.0972(6)
B/v. 0.500(5) : 0.48(2) 0.2522(6)
v /vy 1.750(5) Z 1.734(3) 1.5798(18)
é 0.285(2) 2 0.292(7) 0.1596(4)
n 0.000(1) 0 0.01(2) 0.3137(10)
n 0.282(4) z 0.28(2)
z 1.141(2) g 1.3(2) 1.2660(14)
1/6n 0.222(2) 2 N.A. 0.111(3)

with just a single absorbing domain. Though the models
are quite different their critical behavior may very well be
governed by the same “critical domain dynamics,” which
would explain why the models exhibit the same critical
behavior. These arguments are obviously not rigorous,
but still may provide some insight into why these models
apparently belong to the same universality class.

VII. SUMMARY

The critical exponents of the BAW with an even num-
ber of offspring have been determined accurately and
could be given exactly by simple rational numbers listed
in Table I. This model clearly belongs to a non-DP uni-
versality class. I have argued that the cellular automata

models, proposed by Grassberger et al. [28], for the dy-
namics of kinks between ordered (absorbing) states and a
recently proposed interacting monomer-dimer model [33]
also belong to this universality class. The novel non-DP
critical behavior is apparently associated with the pro-
cess of eliminating domain walls (kinks) in order to end
up with a single absorbing domain.
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